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Abstract

In this paper a solution to the bending problem of reinforced concrete slabs sti�ened by steel beams including

creep and shrinkage e�ect is presented. The adopted model takes into account the resulting in-plane forces and
deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the
system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of

the plate. The forces at the interface, which produce lateral de¯ection and in-plane deformation to the plate, lateral
de¯ection and axial deformation to the beam, are established using continuity conditions at the interface. The creep
and shrinkage e�ect relative with the time of the casting and the time of the loading of the plate is taken into
account. The solution of the arising plate and beam problems which are non-linearly coupled, is achieved using the

Analog Equation Method (AEM). The adopted model, compared with those ignoring the in-plane forces and
deformations, approaches the actual response of the plate±beams system more reliably. Moreover, it permits the
evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of composite

steel±concrete structures. The resulting de¯ections are considerably smaller than those obtained by other
models. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Elastic sti�ened plate; Reinforced plate with beams; Bending; Ribbed plate; Creep; Shrinkage; Composite steel±concrete

structure

1. Introduction

The interest in composite reinforced concrete slabs sti�ened by steel beams has been widespread in

recent years due to the economic and structural advantages of such systems. Composite steel±concrete

structures are e�cient, economical and functional, while construction using steel beams as sti�eners of
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concrete plates is a quick, familiar and economical method for long bridge decks or for long span slabs.
The extensive use of the aforementioned plate structures necessitates a rigorous analysis.

In the extensive literature on static analysis of slab-and-beam structures, their behaviour was initially
approximated by converting this system to an equivalent homogeneous slab of constant thickness using
the sti�ness properties of the beams and applying the orthotropic plate theory (Pama and Cusens, 1967;
Powell and Ogden, 1969). This approximation may only be applicable when the sti�ened plate satis®es
two limitations. The ®rst one is that ratios of spacing between two consecutive sti�eners to slab
boundary dimensions are small enough to ensure approximate homogeneity of sti�ness. The second
limitation is that the ratio of sti�ener rigidity to the slab rigidity must not become so large that the
beam action is predominant.

Subsequently, in more re®ned approximations the adopted models for the analysis of the plate±beams
system isolated the beams from the plate and neglected the shear forces at the interfaces (Cheung et al.,
1994; Hu and Hartley, 1994; King and Zienkienwicz, 1968; Kukreti and Cheraghi, 1993; Kukreti and
Rajapaksa 1990; Ng et al., 1990; de Paiva, 1996; Tanaka and Bercin, 1997). This assumption results in
discrepancies from the actual response of the sti�ened plate. Moreover, it does not allow the
establishment of these forces, which are necessary for the design of composite or prefabricated
structures.

In this paper the analysis of reinforced concrete slabs sti�ened by steel beams including creep and
shrinkage e�ect is presented. The adopted structural model is that employed by Sapountzakis and
Katsikadelis (1998), which, contrary to the models used previously, takes into account the resulting in-
plane forces and deformations of the plate as well as the axial forces and deformations of the beam, due
to combined response of the system. Using this model, the study of the behaviour of a sti�ened plate
subjected to a lateral load and to the e�ects of creep and shrinkage is attempted. The analysis consists
in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The
forces at the interface producing lateral de¯ection and in-plane deformation to the plate, lateral
de¯ection and axial deformation to the beam, are established using continuity conditions at the
interface. The arising plate and beam problems, which are non-linearly coupled, are solved using the
Analog Equation Method (AEM) (Katsikadelis, 1994; Nerantzaki, 1994). The adopted model describes
better the actual response of the plate±beams system and permits the evaluation of the shear forces at
the interface, the knowledge of which is very important in the design of the aforementioned structures
(estimation of shear connectors). The evaluated lateral de¯ections of the plate±beams system are found
to exhibit considerable discrepancy from those of other models, which neglect in-plane and axial forces
and deformations. Finally, the opposed action of creep and shrinkage e�ect to the behaviour of the
sti�ened plate is investigated.

2. Statement of the problem

Consider a thin reinforced concrete plate having constant thickness hp, occupying the domain O of the
x, y plane and sti�ened by a set of parallel steel beams. The plate may have J holes and is supported on
its boundary G � [Jj�0 Gj, which may be piecewise smooth (Fig. 1), while the beams may have point
supports. For the sake of convenience the x-axis is taken parallel to the beams. Let the time of the
casting of the plate tpc be the beginning of the time considered t and tpl be the time at which the plate is
initially subjected to the lateral load g=g(x), x: {x, y }.

The solution of the problem at hand is approached by isolating the beams from the plate by
sections in the lower outer surface of the plate and taking into account the tractions at the
®ctitious interfaces (Fig. 2). These tractions result in the loading of the beam as well as the
additional loading of the plate. Their distribution is unknown and can be established by imposing
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displacement continuity conditions at the interfaces and using the procedure developed in this

investigation.

The integration of the tractions along the width of the beam result in line forces per unit length which
are denoted by qx, qy and qz. Taking into account that the torsional sti�ness of the beam is small, the

traction component qy, in the direction normal to the beam axis, may be ignored. However, in a more

re®ned model the in¯uence of this component may also be considered. The other two components qx
and qz produce the following loading along the trace of each beam.

Fig. 1. Two-dimensional region O occupied by the plate.

Fig. 2. Thin elastic plate sti�ened by beams (a) and isolation of the beams from the plate (b).
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2.1. In the plate

1. A lateral line load ÿqz at the interface.
2. A lateral line load ÿ@Mp/@x due to the eccentricity of the component qx from the middle surface of

the plate. Mp=qxhp/2 is the bending moment.
3. An in-plane line body force qx at the middle surface of the plate.

2.2. In each beam

1. A transverse load qz.
2. A transverse load @Mb/@x due to the eccentricity of qx from the neutral axis of the beam cross

section.
3. An in-plane axial force qx.

The structural models of the plate and the beams are shown in Fig. 3.
On the basis of the above considerations the response of the plate and of the beams may be described

by the following boundary value problems.

2.3. For the plate

The plate undergoes transverse de¯ection and in-plane deformation. Thus, for the transverse
de¯ection we have

Dr4wp ÿ
 
Nx
@2wp

@x2
� 2Nxy

@2wp

@x @y
�Ny

@2w

@y2

!
� gÿ

XK
k�1

�
q�k�z �

@M�k�p

@x

�
d� yÿ yk� in O �1�

Fig. 3. Structural model of the plate and the beams.
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a1wp � a2Vn � a3 �2a�

b1
@wp

@n
� b2Mn � b3 on G �2b�

g1kwp � g2kkTnkk � g3k at the corner point k �2c�
where wp=wp(x, t ) is the time dependent transverse de¯ection of the plate; D�t� � Ep�t�h3p=12�1ÿ n2� is
its time dependent ¯exural rigidity with Ep being the elastic modulus and n the Poisson ratio; Nx=Nx (x,
t ), Ny=Ny (x, t ), Nxy=Nxy (x, t ) are the membrane forces per unit length of the plate cross section at
time t; d( yÿyk) is the Dirac's delta function in the y-direction; Mn and Vn are the bending moment
normal to the boundary and the e�ective reaction along it, respectively, and they are given as

Mn � ÿD
�
@2wp

@n2
� n

@2wp

@ t2

�
�3a�

Vn � ÿD
�
@

@n
r2wp ÿ �nÿ 1� @

@s

@2wp

@n @ t

�
�3b�

Tn is the twisting moment along the boundary given as

Tn � D�1ÿ n�
�
@2wp

@s @n
ÿ k

@wp

@s

�
�4�

and kTnkk is its jump of discontinuity at the corner point k.
Finally, ai, bi, gi (i=1, 2, 3) are functions speci®ed on the boundary G.
The boundary conditions (2a,b) are the most general linear boundary conditions for the plate problem

also including the elastic support. It is apparent that all types of the conventional boundary conditions
(clamped, simply supported, free or guided edge) can be derived from these equations by specifying
appropriately the functions ai and bi (e.g. for a clamped edge it is a1=b1=1, a2=a3=b2=b3=0).

If the stresses are kept within the limits corresponding to the normal service conditions, assuming
linear relationship between creep and the stress causing the creep and denoting by tp=tplÿtpc, Trost's
theory (Trost and Wol�, 1970) gives the tangent modulus of elasticity as

Ep�t� � Epl

1� wj�t, tp� �5�

where Epl is the tangent modulus of elasticity of the plate at time tp; w is an ageing coe�cient depending
on strain development with time; j(t, tp) is the creep coe�cient related to the elastic deformation at tp
days which is de®ned as (Eurocode, 1991)

j�t, tp� � fRHb� fcm�b�tp�bcp�tÿ tp� �6�

where jRH, b( fcm) and b(tp) are factors depending on the relative humidity, the concrete strength and
the concrete age at loading, respectively, which are de®ned as

jRH � 1� �1ÿ RH=100�=�0:103
�����
h0

p
� �7a�

b� fcm� � 16:8=
������
fcm

p
�7b�
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b�tp� � 1=�0:1� t0:20p � �7c�

where RH is the relative humidity of the ambient environment in %; h0=2Ap/up is the notional size of
the plate in mm; Ap is the area of the plate cross section; up is the plate perimeter in contact with the
atmosphere; fcm is the mean compressive strength of concrete in N/mm2 at the age of 28 days.
Moreover, bcp(tÿtp) in Eq. (6) is a coe�cient for the development of creep with time, which is estimated
from

bcp�tÿ tp� � ��tÿ tp�=�bH � tÿ tp��0:3 �8�

where bH is a coe�cient depending on the relative humidity RH, given as

bH � 1:5�1� �0:012RH �18�h0 � 250R1500 �9�
Since the linear plate bending theory is considered, the components of the membrane force Nx, Ny, Nxy

do not depend on the de¯ection wp. They are given as

Nx � C

�
@up

@x
� n

@vp

@y

�
�10a�

Ny � C

�
n
@up

@x
� @vp

@y

�
�10b�

Nxy � C
1ÿ n
2

�
@up

@y
� @vp

@x

�
�10c�

where C(t )=Ep(t )/(1ÿn 2); up=up(x, t ) and vp=vp(x, t ) are the displacement components of the middle
surface of the plate arisen from the line body force qx, the temperature distribution Tp(x, t ) due to the
plate shrinkage and the possible boundary in-plane loading. These displacement components are
established by solving independently the plane stress problem, which is described by the following
boundary value problem (Navier's equations of equilibrium)

r2up � 1� n
1ÿ n

@

@x

�
@up

@x
� @vp

@y

�
� 1

Gp

qxd� yÿ yk� ÿ 2a
1� n
1ÿ n

@Tp

@x
� 0 in O �11a�

r2vp � 1� n
1ÿ n

@

@y

�
@up

@x
� @vp

@y

�
ÿ 2a

1� n
1ÿ n

@Tp

@y
� 0 �11b�

g1un � g2Nn � g3 �12a�

d1ut � d2Nt � d3 on G �12b�
in which Gp(t )=Ep(t )/2(1+n ) is the shear modulus of the plate; a is the linear coe�cient of thermal
expansion; Nn, Nt and un, ut are the boundary membrane forces and displacements in the normal and
tangential directions to the boundary, respectively; gi, di (i=1, 2, 3) are functions speci®ed on G.

Assuming that creep and shrinkage are independent, the temperature distribution Tp(x, t ) is given as
(Eurocode, 1991)
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Tp�x, t� � Esp�tÿ tpc�=a �13�
where Esp(tÿtpc) is the shrinkage strain calculated from

Esp�tÿ tpc� � Esp� fcm�bRHbsp�tÿ tpc� �14�

where Esp( fcm), bRH are factors depending on the concrete strength and the relative humidity,
respectively, which are de®ned as

Esp� fcm� � �160� bsc�90ÿ fcm��10ÿ6, �15a�

bRH �
�
ÿ1:55�1ÿ �RH=100�3�, for 40%RRHR99% �stored in air�
�0:25�1ÿ �RH=100�3� for RHr99% �immersed in water� �15b�

where bsc is a coe�cient depending on type of cement. Moreover, bsp(tÿtpc) in Eq. (14) is a coe�cient
for the development of shrinkage with time, which is estimated from

bsp�tÿ tpc� � ��tÿ tpc�=�0:035h20 � tÿ tpc��0:5 �16�

2.4. For each beam

Each beam undergoes transverse de¯ection and axial deformation. Thus, for the transverse de¯ection
we have

EbIb
d4wb

dx4
ÿNb

@2wb

@x2
� qz ÿ @Mb

@x
in Lk, k � 1, 2, . . . , K �17�

a1wb � a2V � a3 at the beam ends x � 0, l �18a�

b1
@wb

@x
� b2M � b3 �18b�

where wb=wb(x, t ) is the time dependent transverse de¯ection of the beam; EbIb is its ¯exural rigidity;
Nb=Nb(x, t ) is the axial force at the neutral axis; V, M are the reaction and the bending moment at the
beam ends, respectively; ai, bi (i = 1, 2, 3) are coe�cients speci®ed at the boundary of the beam. It is
apparent that all types of the conventional boundary conditions (clamped, simply supported, free or
guided edge) can be derived from Eqs. (18a,b) by specifying appropriately the coe�cients ai, bi (e.g. for
a simply supported end it is a1=b2=1, a2=a3=b1=b3=0).

Since the linear beam bending theory is considered, the axial force of the beam does not depend on
the de¯ection wb. The axial deformation of the beam arisen from the in-plane axial force qx is described
by solving independently the boundary value problem, i.e.

EbAb
@2ub

@x2
� ÿqx in Lk, k � 1, 2, . . . , K �19�

c1ub � c2N � c3 at the beam ends x � 0, l �20�
where N is the axial reaction at the beam ends.

Eqs. (1), (11a), (11b), (17), and (19) constitute a set of ®ve coupled partial di�erential equations
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including seven unknowns, namely wp, up, vp, wb, ub, qx, qz. Two additional equations are required,
which result from the continuity conditions of the displacements in the direction of the z- and x-axes at
the interface between the plate and the beams. These conditions can be expressed as

wp � wb �21�

up ÿ hp

2

@wp

@x
� ub � hb

2

@wb

@x
�22�

It must be noted that the coupling of Eqs. (1) and (11a,b), as well as Eqs. (17) and (19) is non-linear
due to the terms including the unknown membrane and axial forces, respectively.

3. Numerical solution

The numerical solution of the described plate bending, plane stress, beam bending and axial beam
problems is achieved using the AEM as this is presented in detail by Sapountzakis and Katsikadelis
(1998). The main points of the numerical solution are summarized below.

3.1. The Analog Equation Method for the plate equation

Let wp be the sought solution of the boundary value problem (1), (2a,b). If the biharmonic operator is
applied to this function we have

r4wp � qp in O �23�
Eq. (23) indicates that the solution of the original problem, Eq. (1), can be obtained from the solution
of a linear plate bending problem with unit sti�ness, under the same boundary conditions and subjected
to the ®ctitious load distribution qp(x). This problem is readily solved if the ®ctitious loading were
known.

Thus, the problem is converted to that of establishing the unknown load density qp(x). This is
accomplished using the Boundary Element Method (BEM) as follows.

The solution of Eq. (23) is given in the integral form as

Ewp�x� �
�
O
w�pqp dOÿ

�
G

�
w�pVn ÿ

@w�p
@n

Mn � wpV
�
n ÿ

@wp

@n
M�n

�
dsÿ

X
k

�w�pkTnkk ÿ wpkT �nkk� �24�

where E=1, 1/2 or 0 depending on whether the point x is inside the domain O, on the boundary G, or
outside O, respectively. The boundary has been assumed smooth at x $ G. Moreover, w �p is the
fundamental solution, which is given as

w�p �
1

8p
r2 ln r �25�

with r=[(xÿx )2+(Zÿy )2]1/2, x, y $ O[G, x, Z $ G. The quantities M �n and V �n are obtained from Eqs. (3)
and (4), respectively, by replacing wp with w �p.

Eq. (24) and its normal derivative for x $ G yield the following boundary integral equations
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1

2
wp�x� �

�
O
w�pqp dOÿ

�
G

�
w�pVn ÿ

@w�p
@n

Mn � wpV
�
n ÿ

@wp

@n
M�n

�
dsÿ

X
k

�w�pkTnkk ÿ wpkT �nkk� �26a�

1

2

@wp�x�
@nx

�
�
O

@w�p
@nx

qp dOÿ
�
G

 
@w�p
@nx

Vn ÿ
@2w�p
@nx @n

Mn � wp
@

@nx
V �n ÿ

@wp

@n

@

@nx
M�n

!
ds

ÿ
X
k

�
@w�p
@nx
kTnkk ÿ wp

@

@nx
kT �nkk

�
�26b�

Eqs. (26a,b) together with Eqs. (2a,b) can be employed to express the unknown boundary quantities wp,
@wp/@n, Mn, Vn in terms of qp. This is accomplished numerically evaluating the boundary integrals using
constant boundary elements and the domain integrals using constant cells. The domain discretization is
shown in Fig. 4. If N is the number of boundary nodal points and M that of the domain nodal points,
the discretized counterpart of Eq. (24) when applied to all nodal points in O after elimination of the 4N
boundary quantities yields

fwpg � �P �fqpg �27�
where [P ] is a known M�M coe�cient matrix.

Further, di�erentiating Eq. (24) for x $O we obtain

wp, x�x� �
�
O
w�p, xqp dOÿ

�
G

 
w�p, xVn ÿ

�
@w�p
@n

�
, x
Mn � wp�V �n�, x ÿ

@wp

@n
�M�n�, x

!
ds

ÿ
X
k

�w�p, xkTnkk ÿ wpkT �n, xkk� �28a�

Fig. 4. Discretization of the plate.
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wp, xx�x� �
�
O
w�p, xxqp dOÿ

�
G

 
w�p, xxVn ÿ

�
@w�p
@n

�
, xx

Mn � wp�V �n�, xx ÿ
@wp

@n
�M�n�, xx

!
ds

ÿ
X
k

�w�p, xxkTnkk ÿ wpkT �n, xxkk� �28b�

wp, yy�x� �
�
O
w�p, yyqp dOÿ

�
G

 
w�p, yyVn ÿ

�
@w�p
@n

�
, yy

Mn � wp�V �n�, yy ÿ
@wp

@n
�M�n�, yy

!
ds

ÿ
X
k

�w�p, yykTnkk ÿ wpkT �n, yykk� �28c�

wp, xy�x� �
�
O
w�p, xyqp dOÿ

�
G

 
w�p, xyVn ÿ

�
@w�p
@n

�
, xy

Mn � wp�V �n�, xy ÿ
@wp

@n
�M�n�, xy

!
ds

ÿ
X
k

�w�p, xykTnkk ÿ wpkT �n, xykk� �28d�

Using the same boundary and domain discretization and once more eliminating the boundary quantities
we obtain

fwp, xg � �Px�fqpg �29a�

fwp, xxg � �Pxx�fqpg �29b�

fwp, yyg � �Pyy�fqpg �29c�

fwp, xyg � �Pxy�fqpg �29d�
where [Px], [Pxx], [Pyy], [Pxy] are known M�M coe�cient matrices. Note that Eqs. (27) and (29a,b,c,d)
are valid for homogeneous boundary conditions (a3=b3=0). For non-homogeneous boundary
conditions, an additive constant vector will appear on the right-hand-side of these equations.

The ®nal step of AEM is to apply Eq. (1) to the M nodal points inside O. This yields

Dfqpg ÿ ��Nx��Pxx� � 2�Nxy��Pxy� � �Ny��Pyy��fqpg � fgg ÿ �Z �fqzg ÿ �X �fqxg �30�
where [Nx], [Nxy] and [Ny] are unknown diagonal M �M matrices including the values of the in-plane
forces; {qz} and {qx} are vectors with L elements; L is the total number of the nodal points at the
interfaces; [Z ] is a position vector which converts the vector {qz} into a vector with length M. The
matrix [X ] results after approximating the derivative of Mp with ®nite di�erences. Its dimensions are
also M� L.

3.2. The Analog Equation Method for the plane stress problem

The AEM for this problem is presented in Katsikadelis and Kandilas (1994). Following this procedure
and using the same boundary and domain discretization the membrane forces for homogeneous
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boundary conditions (12a,b) (g3=d3=0) are expressed as follows

fNxg � �Fx�fqxg �31a�

fNxyg � �Fxy�fqxg �31b�

fNyg � �Fy�fqxg �31c�
where [Fx], [Fxy] and [Fy] are known matrices with dimensions M� L.

3.3. The Analog Equation Method for the de¯ection of the beams

Similarly with the plate, let wb be the sought solution of the boundary value problem described by
Eqs. (17) and (18a,b). Di�erentiating this function four times yields

d4wb

dx4
� qb �32�

Eq. (32) indicates that the solution of the original problem can be obtained as the de¯ection of a beam
with unit ¯exural rigidity subjected only to a transverse ®ctitious load qb under the same boundary
conditions. The ®ctitious load is unknown. However, it can be established using the BEM as follows.

The solution of Eq. (32) is given in integral form as

wb�x� �
�l
0

w�bqp ds�
�
w�bVÿ

@w�b
@x

M� wbV
� ÿ @wb

@x
M�

�l
0

�33�

where w �b is the fundamental solution which is given as

w�b � 1
12 l

3�2� j r j3 ÿ3 j r j2� �34�
with r=r/l, r=xÿx, x $ Lk, k = 1, 2, . . . ,K, x at the beam ends x = 0, l and the quantities M� and V�

are given as

M� � 1
2 l�1ÿ j r j� �35a�

V � � ÿ1
2sgn r �35b�

Further, di�erentiating Eq. (33) for x $ Lk, k=1, 2, . . . ,K we obtain

wb, x�x� �
�l
0

w�b, xqb dsÿ
"
w�b, xVÿ

�
@w�b
@x

�
, x

M� wb�V ��, x ÿ
@wb

@x
�M��, x

#l

0

�36a�

wb, xx�x� �
�l
0

w�b, xxqb dsÿ
"
w�b, xxVÿ

�
@w�b
@x

�
, xx

M� wb�V ��, xx ÿ
@wb

@x
�M��, xx

#l

0

�36b�

Eqs. (33) and (36a) for x = 0 and x=l together with Eqs. (18a,b) can be employed to express the
unknown boundary quantities wb, @wb/@n, M, V in terms of qb. Moreover, the discretized counterpart of
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Eqs. (33) and (36a,b) when applied to the L nodal points at the interfaces after elimination of the
boundary quantities yields

fwbg � �B �fqbg �37a�

fwb, xg � �Bx�fqbg �37b�

fwb, xxg � �Bxx�fqbg �37c�
where [B ], [Bx], [Bxx] are known L � L coe�cient matrices. Note that Eqs. (37a,b,c) are valid for
homogeneous boundary conditions (a3=b3=0). For non-homogeneous boundary conditions, an additive
constant vector will appear on the right-hand-side of these equations.

The ®nal step of AEM is to apply Eq. (8) to the L nodal points at the interfaces. This yields

EbIbfqbg ÿ �Nb��Bxx�fqbg � fqzg ÿ �Q�fqxg �38�
where [Nb] is an unknown diagonal L � L matrix including the values of the in-plane forces; {qz} and
{qx} are vectors with L elements. The matrix [Q ] results after approximating the derivative of Mb with
®nite di�erences. Its dimensions are also L� L.

3.4. The Analog Equation Method for the axial deformation of the beams

The solution of Eq. (19) is given in integral form as

ub�x� � ÿ
�l
0

u�bqx ds�
�
u�b

dub

dx
ÿ du�b

dx
ub

�l
0

�39�

where

u�b �
1

2EbAb

�lÿ j r j� �40�

Following the same procedure as in Section 3.3 the axial force at the neutral axis of the beam for
homogeneous boundary conditions (20) (c3=0) can be expressed as follows

fNbg � �Fb�fqxg �41�
where [Fb] is a known matrix with dimensions L�L.

Eqs. (30) and (38) after elimination of the quantities Nx, Ny, Nxy, Nb using Eqs. (31a,b,c), and (41)
together with continuity conditions (21), and (22), which after discretization at the L nodal points at the
interfaces are written as

fwpg � fwbg �42a�

fupg ÿ hp

2
fwp, xg � fubg � hb

2
fwb, xg �42b�

constitute a non-linear system of equations with respect to qz, qx, qp, qb. This system is solved using
iterative numerical methods. Subsequently, the de¯ection at any interior point x $ O of the sti�ened plate
is established using the discretized counterpart of Eq. (24) when applied to this point.
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For the solution of the non-linear system of equations the two-term acceleration method (Isaacson
and Keller, 1966; Sapountzakis and Katsikadelis, 1992) has been employed. According to this method,
an initial vector, say q(0)x =0 is assumed. Using this vector and Eqs. (38) and (42a,b) the values of the
vectors q(0)z , q(0)p , q(0)b are computed. Introducing these values into Eq. (30) a vector q(1 ')x is obtained. To
accelerate convergence the new initial vector is given as

q�1�x � aq�0�x � bq�1
0 �

x �43�
where a, b are appropriately chosen weight factors with a+b=1.

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a
computer program has been written and representative examples have been studied to demonstrate the
e�ciency and the range of applications of the developed model. In all the examples treated, the
numerical results have been obtained using 54 constant boundary elements and 162 constant domain
rectangular cells. For these examples 350 iterations were required to achieve a tolerance limit of
1.0Eÿ03.

4.1. Example 1

A rectangular plate with dimensions a � b= 18.0 � 9.0 m subjected to a uniform load g= 10 kN/m2

and sti�ened by an I-section beam (Fig. 5) through the centre line of the plate has been studied. The
plate is simply supported along its small edges, while the other two edges are free according to the
transverse boundary conditions and ux=uy=0 along the edges x=ap/2, x=ÿap/2, Ny=Nxy=0 along
the edges y=bp/2, y=ÿbp/2 according to the in-plane boundary conditions. The numerical results have
been obtained for di�erent values of the height hweb of the beam. In Table 1 the de¯ections of the
sti�ened plate at its centre and at the middle of the free edge are shown as compared with those
obtained from a FEM solution (So®stik, 1995), which cannot include the in-plane forces and
deformations. The discrepancy of the results, which is more pronounced at the centre of the plate, is

Fig. 5. Plan (a) and cross section (b) of the sti�ened plate of Example 1.
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Table 1

De¯ections w (m) at the centre and at the middle of the free edge of the sti�ened plate of Example 1 (Ep=3.0 � 107 kN/m2,

hp=0.20 m, n=0.154)

hweb Centre Middle of the free edge

AEM FEM (So®stik, 1995) AEM FEM (So®stik, 1995)

2.00 0.0008 0.0239 0.0206 0.0453

1.50 0.0013 0.0369 0.0212 0.0583

1.00 0.0029 0.0596 0.0227 0.0809

0.50 0.0090 0.1012 0.0287 0.1226

No beam 0.6719 0.6721 0.6938 0.6944

Fig. 6. Distribution of the qx forces along the beam axis of the sti�ened plate of Example 1.
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obvious. Moreover, in Figs. 6 and 7 the distributions of the interface forces qx and qz are presented for
various values of the height hweb of the beam.

4.2. Example 2

Creep and shrinkage e�ect on the sti�ened plate of Example 1 has been studied. The following data
have been used for the numerical results: concrete C25/30, fcm=25 N/mm2, RH = 40%, tp=28 days,
Epl=Ec28=32.55 kN/mm2, hp=0.20 m, n=0.154, bsc=5 (normal or rapid hardening cement), a =

Fig. 7. Distribution of the qz forces along the beam axis of the sti�ened plate of Example 1.

Table 2

De¯ections w (m) at the centre of the sti�ened plate of Example 2

Age of concrete t (days) hweb of the sti�ening beam

1.00 1.50 2.00

AEM FEM (So®stik, 1995) AEM FEM (So®stik, 1995) AEM FEM (So®stik, 1995)

30 0.2913Eÿ2 0.6175Eÿ1 0.1363Eÿ2 0.3773Eÿ1 0.7692Eÿ3 0.2427Eÿ1
100 0.3049Eÿ2 0.6399Eÿ1 0.1430Eÿ2 0.3869Eÿ1 0.8093Eÿ3 0.2472Eÿ1
150 0.3071Eÿ2 0.6516Eÿ1 0.1442Eÿ2 0.3915Eÿ1 0.8162Eÿ3 0.2491Eÿ1
300 0.3097Eÿ2 0.6568Eÿ1 0.1456Eÿ2 0.3935Eÿ1 0.8251Eÿ3 0.2498Eÿ1
1000 0.3111Eÿ2 0.6618Eÿ1 0.1465Eÿ2 0.3948Eÿ1 0.8318Eÿ3 0.2499Eÿ1
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10ÿ58C. In Fig. 8 the distributions of the de¯ection w along the beam axis for the height of the beam

hweb=1.00 m and for various instants are shown. From this ®gure the predominant action of creep

compared to shrinkage at all times is obvious. Moreover, in Table 2 the de¯ections w at the centre of

the sti�ened plate for di�erent values of the height hweb and for various instants are shown as compared

with those obtained from a FEM solution (So®stik, 1995), which cannot include the in-plane forces and

deformations. The discrepancy of the results is once more obvious. According to the obtained interface

Fig. 8. De¯ections along the beam axis with hweb=1.00 m of the sti�ened plate of Example 2.

Table 3

Time development of the interface forces qx at point x=8.5 of the interface of the sti�ened plate of Example 2

Age of concrete t (days) hweb of the sti�ening beam

0.50 1.00 1.50 2.00

30 2564 1621 1177 920

60 2553 1618 1175 919

100 2542 1613 1171 916

150 2532 1607 1167 913

200 2523 1603 1164 911

300 2510 1596 1159 907

500 2493 1586 1152 901

1000 2468 1572 1142 894
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forces qx of the sti�ened plate, in Table 3 the time development of these forces at point x=8.5 m of the
interface for di�erent values of the height hweb of the beam is presented.

5. Concluding remarks

A solution to the bending problem of reinforced concrete slabs sti�ened by steel beams including
creep and shrinkage e�ect is presented. A realistic model has been adopted, which contrary to other
approaches, takes into account the in-plane forces and deformations of the plate as well as the axial
forces and deformations of the beams. The main conclusions that can be drawn from this investigation
are:

1. The evaluated lateral de¯ections of the plate±beams system are found to exhibit considerable
discrepancy from those of other models, which neglect in-plane and axial forces and deformations.

2. The adopted model permits the evaluation of the in-plane shear forces at the interface between the
plate and the beams, the knowledge of which is very important in the design of composite steel±
concrete structures (estimation of shear connectors).

3. The proposed model permits the study of the behaviour of a composite steel±concrete sti�ened plate
due to the opposed e�ects of creep and shrinkage. In the studied examples the predominant action of
creep compared to shrinkage at all times was veri®ed.

4. The e�ect of creep and shrinkage is more pronounced in the case of low height beams and in the
early age of concrete.
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